For an equilateral prism, it is found that angle of minimum deviation is equal to angle of the prism. Find the refractive index of material of the prism. |
$\frac{1}{\sqrt{3}}$ $\sqrt{2}$ $\frac{1}{\sqrt{2}}$ $\sqrt{3}$ |
$\sqrt{3}$ |
The correct answer is Option (4) → $\sqrt{3}$ The refractive index (μ) is given by - $μ=\frac{\sin\left(\frac{60+60}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ where, $D_{min}$ = Angle of Minimum deviation $μ=\frac{\sin\left(\frac{60+60}{2}\right)}{\sin\left(\frac{60}{2}\right)}=\frac{\sin 60°}{\sin 30°}$ $μ=\sqrt{3}$ |