For $x<\frac{1}{2}$, derivative of $\tan ^{-1}\left(\frac{1+2 x}{1-2 x}\right)$ with respect to $\sqrt{1+4 x^2}$ is: |
$\frac{2 x}{1+4 x^2}$ $\frac{1}{2 x \sqrt{1+4 x^2}}$ $\frac{1}{x \sqrt{1+4 x^2}}$ $2 x \sqrt{1+4 x^2}$ |
$\frac{1}{2 x \sqrt{1+4 x^2}}$ |
The correct answer is Option (2) → $\frac{1}{2 x \sqrt{1+4 x^2}}$ $y=\tan^{-1}\left(\frac{1+2x}{1-2x}\right)$ $z=\sqrt{1+4x^2}$ Now, $\frac{d\tan^{-1}u}{dx}=\frac{1}{1+u^2}.\frac{du}{dx}$, where $u=\frac{1+2x}{1-2x}$ $⇒\frac{du}{dx}=\frac{(1-2x)(2)-(1+2x)(-2)}{(1-2x)^2}$ $=\frac{4}{(1-2x)^2}$ Now, compute $1+u^2=1+\left(\frac{1+2x}{1-2x}\right)^2$ $=\frac{(1-2x)^2+(1+2x)^2}{(1-2x)^2}$ $=\frac{2(1+4x^2)}{(1-2x)^2}$ $∴\frac{dy}{dx}=\frac{1}{1+u^2}\frac{du}{dx}$ $=\frac{2}{1+4x^2}$ and, $z=\sqrt{1+4x^2}$ $\frac{dz}{dx}=-\frac{1}{2\sqrt{1+4x^2}}.8x$ $=\frac{4x}{\sqrt{1+4x^2}}$ $∴\frac{dy}{dx}=\frac{dy}{dx}×\frac{dz}{dz}=\frac{1}{2x\sqrt{1+4x^2}}$ |