In Young's double slit experiment the intensity at a point where path difference is $λ/6$ is I. If $I_o$ denotes the maximum intensity, then $I/I_o$ is equal to : |
$\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ |
$\frac{3}{4}$ |
The correct answer is Option (3) → $\frac{3}{4}$ In young's double-slit experiment, the intensity at a point depends on the phase difference caused by the path difference between two waves. $I=I_0\cos^2\left(\frac{\phi}{2}\right)$ ....(1) where, I = Intensity at the point $I_0$ = Maximum intensity $\phi$ = Phase difference The phase difference ($\phi$) is related to its path difference (Δx). $\phi =\frac{2πΔx}{λ}$ Path difference, $Δx=\frac{λ}{6}$ [given] $\phi =\frac{12π}{λ}×\frac{λ}{6}=\frac{π}{3}$ substitute $\phi=\frac{π}{3}$ in equation (1) $I=I_0\cos^2\left(\frac{π}{3}.\frac{1}{2}\right)$ $⇒\frac{I}{I_0}=\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{4}$ |