If $x=5t $ and $y=\frac{5}{t}$, then $\frac{d^2y}{dx^2}$ at $t=1$ is: |
$\frac{2}{5}$ $-\frac{5}{2}$ $\frac{1}{5}$ $-\frac{2}{5}$ |
$\frac{2}{5}$ |
The correct answer is Option (1) → $\frac{2}{5}$ $x=5t$ $\frac{dx}{dt}=5$ $y=\frac{5}{t}$ $\frac{dy}{dt}=-\frac{5}{t^2}$ $⇒\frac{dy}{dx}=-\frac{1}{t^2}$ $⇒\frac{d^2y}{dx^2}=\frac{2}{5t^3}$ $⇒\left.\frac{d^2y}{dx^2}\right|_{t=1}=\frac{2}{5}$ |