Solution of $\frac{dy}{dx}=2^{y-x}$ is : |
$2^{-y}+2^{-x}=k$ $2^{-y}=k-3.2^{-x}$ $2^{-y}-2^{-x}=k$ $2^{-y}-5.2^{-x}=k$ |
$2^{-y}-2^{-x}=k$ |
The correct answer is Option (3) → $2^{-y}-2^{-x}=k$ $\frac{dy}{dx}=\frac{2^y}{2^x}$ $⇒\int\frac{1}{2^y}dy=\int\frac{1}{2^x}dx$ $⇒2^{-y}-2^{-x}=k$ [k = constant] |