If $x=5t^3$ and $y=3t^4,$ then $\frac{d^2y}{dx^2}$ is equal to : |
$\frac{3}{5t}$ $\frac{4}{75t^2}$ $\frac{2}{75t}$ $\frac{4}{75t}$ |
$\frac{4}{75t^2}$ |
The correct answer is Option (2) → $\frac{4}{75t^2}$ $x=5t^3$ and $y=3t^4$ $\frac{dx}{dt}=15t^2$, $\frac{dy}{dt}=12t^3$ $⇒\frac{dy}{dx}=\frac{12t^3}{15t^2}=\frac{4}{5}t$ $⇒\frac{d^2y}{dx^2}=\frac{4}{5}×\frac{dt}{dx}=\frac{4}{5}×\frac{1}{15t^2}=\frac{4}{75t^2}$ |