Check the nature of the function $f(x)=x^3+x+1, x ∈ R$ using analytical method and differentiation method. |
one-one function Many-one function Onto function Bijective function |
one-one function |
$f(x)=x^3+x+1$ Let $f(x_1) = f(x_2)$ $⇒ x_1^3 + x_1 + 1 = x_2^3 + x_2 + 1$ $⇒x_1^3-x_2^3+x_1-x_2=0$ $⇒(x_1 − x_2) (x_1^2 + x_1 x_2+x_2^2+1)=0$ $⇒x_1= x_2$ or $x_1^2+x_1x_2+x_2^2+1=0$ From $x_1^2+x_1x_2+x_2^2+1=0$ $x_1=\frac{-x_2±\sqrt{x_2^2-4(x_2^2+1)}}{2}$ $=\frac{-x_2±\sqrt{-3x_2^2-4}}{2}$ $=\frac{-x_2±i\sqrt{3x_2^2+4}}{2}$, where $i=\sqrt{-1}$ Thus, $x_1 = x_2$ only. Hence f(x) is one-one. Also, $f'(x)=3x^2+1>0∀∈R$ So, f(x) is one-one function. |