Let $y(x) = ax^2 + bx + 5$ be the solution of the differential equation $\frac{dy}{dx} = x + 1; y(0) = 5$, then the value of \( a + b \) is: |
$\frac{3}{2}$ 1 2 -1 |
$\frac{3}{2}$ |
The correct answer is Option (1) → $\frac{3}{2}$ ***** Given $ y(x) = ax^{2} + bx + 5 $ $ \frac{dy}{dx} = 2ax + b $ Differential equation: $ \frac{dy}{dx} = x + 1 $ So, $ 2ax + b = x + 1 $ Equating coefficients: $ 2a = 1 \text{ implies }a = \frac{1}{2}, \quad b = 1 $ Also, $ y(0) = 5 $ is satisfied. $ a+b = \frac{1}{2} + 1 = \frac{3}{2} $ Answer: $ \frac{3}{2} $ |