The general solution of the differential equation $\frac{xdy}{dx}+ 4y = x^3, (x≠0)$ is: |
$y=\frac{x^3}{7}+cx^{-4}$: c is arbitrary constant. $y=\frac{x^3}{7}+cx^{-7}$: c is arbitrary constant. $y=\frac{x^7}{7}+cx^{-4}$: c is arbitrary constant. $y=\frac{x^7}{7}+cx^{-3}$: c is arbitrary constant. |
$y=\frac{x^3}{7}+cx^{-4}$: c is arbitrary constant. |
The correct answer is Option (1) → $y=\frac{x^3}{7}+cx^{-4}$: c is arbitrary constant. Given differential equation: $x \frac{dy}{dx} + 4y = x^3$ Rewrite in standard linear form: $\frac{dy}{dx} + \frac{4}{x} y = x^2$ Integrating factor (I.F.) = $e^{\int \frac{4}{x} dx} = e^{4\ln x} = x^4$ Multiplying both sides by $x^4$: $x^4 \frac{dy}{dx} + 4x^3 y = x^6$ $\frac{d}{dx}(x^4 y) = x^6$ Integrating both sides: $x^4 y = \int x^6 dx = \frac{x^7}{7} + C$ General solution: $y = \frac{x^7}{7x^4} + \frac{C}{x^4} = \frac{x^3}{7} + \frac{C}{x^4}$ |