By using the properties of definite integrals, the value of \(\int_{-5}^{5}\left(x+2\right)dx\) is |
\(22\) \(24\) \(20\) \(39\) |
\(20\) |
The correct answer is Option (3) → \(20\) \(I=\int\limits_{-5}^{5}\left(x+2\right)dx\) $=\int\limits_{-5}^{0}(x+2)dx+\int\limits_{0}^{5}(x+2)dx$ $=\left[\frac{x^2}{2}+2x\right]_{-5}^{0}+\left[\frac{x^2}{2}+2x\right]_{0}^{5}$ $=\left[0-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10\right]$ $=20$ |