If $1^{100}+2^{100}+3^{100}+4^{100}+5^{100}≡R(mod\, 5)$ then value of R is : |
0 1 2 4 |
4 |
The correct answer is Option (4) → 4 $1^n≡1(mod\,5)∀n∈N$ $∴1^{100}≡1(mod\,5)$ ...(1) $2^4≡1(mod\,5)$ $(2^4)^{25}≡(1)^{25}(mod\,5)$ $∴2^{100}≡1(mod\,5)$ ...(2) $3^4≡1(mod\,5)$ $∴3^{100}≡1(mod\,5)$ ...(3) $4^4≡1(mod\,5)$ $∴4^{100}≡1(mod\,5)$ ...(4) $5^n≡0(mod\,5)∀n∈N$ $∴5^{100}≡0(mod\,5)$ ...(5) From (1), (2), (3), (4) & (5) $1^{100}+2^{100}+3^{100}+4^{100}+5^{100}≡1+1+1+1+0(mod\,5)$ $≡4(mod\,5)$ |