The purchase price P of a ₹50,000, 6% bond, dividends payable semi-annually, redeemable at par in 10 years, if the yield is to be 5% compounded semi-annually. Then P is equal : [Given $(1.025)^{-20}=0.61027094]$ |
₹35897.29 ₹53897.29 ₹53789.29 ₹58973.29 |
₹53897.29 |
The correct answer is Option (2) → ₹53897.29 Face Value = 50,000 Coupon Rate = 6% per annum → Semi-annual coupon = 3% Semi-Annual component payment = $0.03×50,000=1,500$ Redemption value = 50,000 Time to maturity = 10 years → 20 Semi-annual periods. $PV_{Coupons}=C×\left(1-\frac{1}{(1+r)^n}\right)÷r$ $=1500×\left(1-\frac{1}{(1+0.25)^{20}}\right)÷0.025$ $=1500×\frac{0.3898}{0.025}=23,388$ $PV_{Redemption}=\frac{50,000}{(1.025)^{20}}≃30,515$ ∴ Purchase Price = $PV_{Coupons}+PV_{Coupons}$ $=23,388+30,515$ $=₹53897.29$ |