In binomial distribution with $n = 10 $ and $P=\frac{1}{3}$, the probability of the event that unequal number of failures and successes occur is : |
$\frac{5665}{6561}$ $\frac{6905}{6912}$ $\frac{5556}{6561}$ $\frac{5665}{6912}$ |
$\frac{5665}{6561}$ |
The correct answer is Option (1) → $\frac{5665}{6561}$ For Binomal distribution, $P(X=k)=\left({^nC}_k\right)P^kq^{n-k}$ $∴P(X=5)={^{10}C}_5(\frac{1}{3})^5(\frac{2}{3})^5$ $=182$ $P(X=5)=182×(\frac{1}{3^5})×(\frac{2}{3})^5$ $=\frac{182×32}{3^{10}}=\frac{5324}{59049}$ $P(X≠5)=1-P(X=5)=1-\frac{5324}{59049}$ $=\frac{5665}{6561}$ |