If the following data is obtained from a simple random sample: 6, 7, 9, 10, 11, 17 Then the point estimate of population standard deviation is: |
15.21 10 3.898 3.192 |
3.898 |
The correct answer is Option (1) → 15.21 Data: 6, 7, 9, 10, 11, 17 Sample size: $n=6$ Sample mean: $\bar{x}=\frac{6+7+9+10+11+17}{6}=\frac{60}{6}=10$ Deviations squared: $(6-10)^2=16$ $(7-10)^2=9$ $(9-10)^2=1$ $(10-10)^2=0$ $(11-10)^2=1$ $(17-10)^2=49$ Sum: $16+9+1+0+1+49=76$ Sample variance (unbiased): $s^2=\frac{\sum (x_i-\bar{x})^2}{n-1}=\frac{76}{5}=15.2$ Sample standard deviation (point estimate of population σ): $s=\sqrt{15.2} \approx 3.90$ Final Answer: The point estimate of population standard deviation = 3.90 |