Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

Match List I with List II

LIST I LIST II
A. $\frac{dy}{dx}$ for $y^3-3xy^2=x^3+3x^2y$ I. $x(5+6log \, x)$
B. $\frac{dy}{dx}$ for $y=x^x$ II. $\frac{2log x-3}{x^3}$
C. $\frac{d^2y}{dx^2}$ for $y=\frac{log\, x}{x}$ III. $y(1+log x)$
D. $\frac{d^y}{dx^2}$ for $y=x^3log x$ IV. $\frac{(x+y)^2}{y^2-2xy-x^2}$

Choose the correct answer from the options given below :

Options:

A-II, B-I, C-IV, D-III

A-IV, B-III, C-II, D-I

A-I, B-III, C-II, D-IV

A-III, B-IV, C-I, D-II

Correct Answer:

A-IV, B-III, C-II, D-I

Explanation:

The correct answer is Option (2) → A-IV, B-III, C-II, D-I

(A) $3y^2\frac{dy}{dx}-3y^2-6xy\frac{dy}{dx}=3x^2+3x^2\frac{dy}{dx}+6xy$

$⇒\frac{dy}{dx}=\frac{(x+y)^2}{y^2-2xy-x^2}$

(B) $\frac{dy}{dx}=\frac{d(x^x)}{dx}=y(1+\log x)$

(C) $\frac{dy}{dx}=\frac{1-\log x}{x^2}⇒\frac{d^2y}{dx^2}=\frac{2\log x-3}{x^2}$

(D) $\frac{dy}{dx}=3x^2\log x+x^2=x(1+3x\log x)$