If $\begin{bmatrix}x-y&0\\x+y&1\end{bmatrix}$ is an identity matrix and $\begin{bmatrix}x&y\\z&x\end{bmatrix}$ is a singular matrix then: |
$x > y = z$ $x = y > z$ $x = y <z$ $x≠ y≠ z$ |
$x > y = z$ |
The correct answer is Option (1) → $x > y = z$ Given: $\begin{bmatrix} x - y & 0 \\ x + y & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow x - y = 1,\ x + y = 0$ $\Rightarrow x = \frac{1}{2},\ y = -\frac{1}{2}$ Singular matrix condition: $\begin{vmatrix} x & y \\ z & x \end{vmatrix} = 0 \Rightarrow x^2 - yz = 0$ $\Rightarrow \left(\frac{1}{2}\right)^2 - (-\frac{1}{2})z = 0 \Rightarrow \frac{1}{4} + \frac{z}{2} = 0 \Rightarrow z = -\frac{1}{2}$ Hence, $x = \frac{1}{2},\ y = -\frac{1}{2},\ z = -\frac{1}{2} \Rightarrow x > y = z$ |