The function $f(x)=\frac{x}{2}+\frac{2}{x}, x\in R-$ {0}, : |
has a local maximum at x=2 and a local minimum at x=-2 is increasing in (-2, 0) has a local minimum at x=2 and a local maximum at x= -2 is decreasing in (2, ∞) |
has a local minimum at x=2 and a local maximum at x= -2 |
The correct answer is Option (3) → has a local minimum at $x=2$ and a local maximum at $x= -2$ $f(x)=\frac{x}{2}+\frac{2}{x};x∉R-\{0\}$ $f'(x)=\frac{1}{2}-\frac{2}{x^2}$ for critical points, $f'(c)=0$ $⇒\frac{2}{x^2}=\frac{1}{2}$ $⇒x^2=4⇒x=±2$ Now, $f''(x)=\frac{4}{x^3}$ $f''(2)=\frac{2}{3}>0$ ⇒ local minimum at $x=2$ $f''(-2)=-\frac{2}{3}<0$ ⇒ local maximum at $x=-2$ |