The function, $f(x) = x-\frac{1}{x}$ is |
increasing for all $x ∈ (-∞,0) ∪ (0,∞)$ decreasing for all $x ∈ (-∞,0) ∪ (0,∞)$ increasing for all $x ∈ (-∞, ∞)$ neither increasing nor decreasing for $x ∈ (-∞, ∞)$ |
increasing for all $x ∈ (-∞,0) ∪ (0,∞)$ |
The correct answer is Option (1) → increasing for all $x ∈ (-∞,0) ∪ (0,∞)$ Given: $f(x) = x - \frac{1}{x}$ Domain: $x \ne 0$ Compute derivative: $f'(x) = 1 + \frac{1}{x^2}$ Since $\frac{1}{x^2} > 0$ for all $x \ne 0$, $f'(x) > 0$ for all $x \ne 0$ So, $f(x)$ is increasing on both intervals $(-\infty, 0)$ and $(0, \infty)$ separately |