The feasible region for an LPP is shown in the given figure. The maximum value of the objective function $z=3x+4y$ is : |
80 100 75 140 |
100 |
The correct answer is Option (2) → 100 Coordinator of B = ? Equation of line ⇒ y = Slope (x) + c Slope of line = $\frac{y_2-y_1}{x_2-x_1}$ Slope of line $AD=\frac{0-50}{25-0}=-2$ Slope of line $BC=\frac{0-20}{40-0}=-\frac{1}{2}$ Equation of line AD ⇒ $y=-2x+c$ $y=-2x+50$ ...(1) Equation of line BC ⇒ $y=-\frac{1}{2}x+c$ $20=-\frac{1}{2}(0)+c$ $20=c$ $∴y=-\frac{1}{2}x+20$ ...(2) From (1) and (2) $y=-2x+50$ $y=-\frac{1}{2}x+20$ $0=-\frac{3}{2}x+30$ $0=-3x+60$ $x=20$ $y=-2(20)+50$ $=10$ ∴ Coordinator of B ⇒ (20, 0)
∴ Maximum value = 100 |