If A, B and C are three events, then which of the following is incorrect? |
P (Exactly two of A, B, C occur) $≤P(A ∩B)+P(B∩C)+P(C∩A)$ $P(A ∪B∪C)≤P(A)+P(B)+P(C)$ P (Exactly one of A, B, C occur) $≤ P(A) +P(B) +P(C) -P(B ∩ C) - P(C ∩ A)- P ( A ∩ B)$ P ( A and at least one of B C, occurs) ≥ $P(A∩B) +P(A ∩ C)$ |
P ( A and at least one of B C, occurs) ≥ $P(A∩B) +P(A ∩ C)$ |
We have, P (Exactly two of A, B, C occur) $= P(A ∩ B ∩ \overline{C})+ P(A ∩ \overline{B} ∩ C) + P( \overline{A} ∩ B ∩ C)$ $= P( A ∩ B) - P( A ∩ B ∩ C)+ P( A ∩ C) - P( A ∩ B ∩ C)$ + P(B ∩ C - P ( A ∩ B ∩ C)$ $= P(A ∩ B)+ P( B ∩ C) + P( A ∩ C) - 3P (A ∩ B ∩ C) ≤ P(A ∩ B) + P( B ∩ C) + P( A ∩ C)$ Also, $P(A ∪ B ∪ C)$ $= P (A ∪ B) + P(C) - P \begin{Bmatrix}(A ∪ B) ∩ C\end{Bmatrix}$ $≤ P(A ∪ B) + P(C).$ $≤ P(A) +P(B) +P(C)$ $[∵P(A ∪ B) ≤ P(A) + P(B) ]$ Now, P (Exactly one of A, B, C occurs) $P(A ∩ \overline{B} ∩ \overline{C})+ P(\overline{A} ∩ \overline{B} ∩ C)+P(\overline{A} ∩ B ∩ \overline{C})$ $ = P(A ∩ \overline {B ∪ C}) + P(\overline {A ∪ B}∩ C) + P( B ∩\overline {A ∪ C})$ $= P(A) - P \begin{Bmatrix}A ∩(B ∪ C) \end{Bmatrix} +P(C)-P\begin{Bmatrix} C ∩ ( A ∪B)\end{Bmatrix} + P(B) - P\begin{Bmatrix} B ∩(A ∪ C)\end{Bmatrix}$ $= P(A) - P \begin{Bmatrix}(A ∩B )∪ (A ∩ C) \end{Bmatrix} +P(C)-P\begin{Bmatrix} (C ∩ A)∪(C∩B)\end{Bmatrix} + P(B) - P\begin{Bmatrix} (B ∩A) ∪ (B ∩ C)\end{Bmatrix}$ $= P(A) +P(B) +P(C) -2P (A ∩ B) -2P( B ∩ C) - 2P ( A ∩ C) + 3P ( A ∩ B ∩ C)$ $=[P(A) +P(B) +P(C) -P(A ∩ B) -P(B ∩ C) -P (A ∩ C)]-[P(A ∩ B)+P(B ∩ C) + P(A ∩ C) -3P (A ∩ B ∩ C)]$ $= P(A) +P(B) +P(C) -P(A ∩ B) - P(B ∩ C)-P (A ∩ C) $ -P (Exactly two of A, B , C occur) $≤ P(A) +P(B) +P(C) -P(A ∩ B) -P(B ∩ C) -P( A ∩ C)$ Finally, P(A and atleast one of B, C occurs) $=P[A ∩ (B ∪ C)]$ $= P[(A ∩ B) ∪ (A ∩ C)]$ $= P[(A ∩ B) +P (A ∩ C)-P [(A ∩ B) ∩ (A ∩ C)]$ $= P(A ∩ B) + P(A ∩ C) - P(A ∩ B ∩ C)$ $≤ P(A ∩ B) + P(A ∩ C)$ So, option (d) is incorrect. |