For $x ∈ R - \{0\}$, the function $f(x) =\frac{3}{x}+ 7$ is decreasing when |
$x ∈ R$ $x ∈R-\{0\}$ $x = \{0\}$ $x ∈\phi$; $\phi$ is empty set |
$x ∈R-\{0\}$ |
The correct answer is Option (2) → $x ∈R-\{0\}$ Given $f(x)=\frac{3}{x}+7$ with $x\in\mathbb{R}\setminus\{0\}$. Derivative: $f'(x)=-\frac{3}{x^2}$ Since $x^2>0$ for all $x\neq 0$, we have $f'(x)=-\frac{3}{x^2} < 0$ for all $x\neq 0$. Conclusion: The function is decreasing for all $x\in\mathbb{R}\setminus\{0\}$. |