'X' speaks truth in 60% and 'Y' in 50% of the cases. The probability that they contradict each other while narrating the some incident, is |
$\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{2}{3}$ |
$\frac{1}{2}$ |
Consider the following events: A='X' speaks truth, B='Y' speaks truth. Then, $P(A) =\frac{60}{100}=\frac{3}{5}$ and $ P(B) = \frac{50}{100}=\frac{1}{2}$ Required probability $=((A ∪ \overline{B}) ∪ (\overline{A} ∩ B))$ $=(A ∩ \overline{B}) +P (\overline{A} ∩ B)$ $=\frac{3}{5}×\frac{1}{2}+\frac{2}{5}×\frac{1}{2}= \frac{1}{2}$ |