Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

If $\underset{x→0}{\lim}\frac{x(1+a\,\cos x)-b\,\sin x}{x^3}=1$ then:

Options:

a = – 5/2, b = – 1/2

a = – 3/2, b = – 1/2

a = – 3/2, b = – 5/2

a = – 5/2, b = – 3/2

Correct Answer:

a = – 5/2, b = – 3/2

Explanation:

$L=\underset{x→0}{\lim}\frac{x(1+a\,\cos x)-b\,\sin x}{x^3}=1$ 

Use expansions $L=\underset{x→0}{\lim}\frac{x[1+a\,\cos x-b(1-\frac{x^2}{\underline{|3}}+\frac{x^4}{\underline{|4}}...)]}{x^3}$

$⇒\underset{x→0}{\lim}[1+a=\frac{ax^2}{\underline{|2}}+\frac{ax^4}{\underline{|4}}...-b+\frac{ax^2}{\underline{|3}}-\frac{ax^4}{\underline{|5}}....]=\underset{x→0}{\lim}x^2$

$⇒1+a-b=0\,and\,\frac{b}{3!}-\frac{a}{2!}=1$

$a=\frac{-5}{2}⇒b=\frac{-3}{2}$