If $\underset{x→0}{\lim}\frac{x(1+a\,\cos x)-b\,\sin x}{x^3}=1$ then: |
a = – 5/2, b = – 1/2 a = – 3/2, b = – 1/2 a = – 3/2, b = – 5/2 a = – 5/2, b = – 3/2 |
a = – 5/2, b = – 3/2 |
$L=\underset{x→0}{\lim}\frac{x(1+a\,\cos x)-b\,\sin x}{x^3}=1$ Use expansions $L=\underset{x→0}{\lim}\frac{x[1+a\,\cos x-b(1-\frac{x^2}{\underline{|3}}+\frac{x^4}{\underline{|4}}...)]}{x^3}$ $⇒\underset{x→0}{\lim}[1+a=\frac{ax^2}{\underline{|2}}+\frac{ax^4}{\underline{|4}}...-b+\frac{ax^2}{\underline{|3}}-\frac{ax^4}{\underline{|5}}....]=\underset{x→0}{\lim}x^2$ $⇒1+a-b=0\,and\,\frac{b}{3!}-\frac{a}{2!}=1$ $a=\frac{-5}{2}⇒b=\frac{-3}{2}$ |