Which of the following functions is the solution to the differential equation as y'-2x-3 = 0 |
\[y = { x }^{ 2 } + 3x + D \] \[y = { x }^{ 3 } + 3x + D \] \[{ y }^{ 2 }= { x }^{ 2 } + 3x + D \] \[{ y }^{ 2 }= { x }^{ 3 } + 3x + D \] |
\[y = { x }^{ 2 } + 3x + D \] |
y' = 2x +3 $\Rightarrow \frac{dy}{dx} = 2x+3 $ $ \Rightarrow dy = (2x+3)dx$ $ \text {on Integrating }y = x^2 + 3x + D$ |