Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Differential Equations

Question:

Which of the following functions is the solution to the differential equation as y'-2x-3 = 0

Options:

\[y = { x }^{ 2 } + 3x + D \]

\[y = { x }^{ 3 } + 3x + D \]

\[{ y }^{ 2 }= { x }^{ 2 } + 3x + D \]

\[{ y }^{ 2 }= { x }^{ 3 } + 3x + D \]

Correct Answer:

\[y = { x }^{ 2 } + 3x + D \]

Explanation:

y' = 2x +3

$\Rightarrow \frac{dy}{dx} = 2x+3 $

$ \Rightarrow dy = (2x+3)dx$

$ \text {on Integrating }y = x^2 + 3x + D$