An electron is accelerated to potential V. If mass of electron is m = 9.1 × 10–31 kg its charge is e = 1.6 × 10–19 C, then de-Broglie wavelength of electron is |
\( λ = \frac{125}{\sqrt{v}} nm\) \( λ = \frac{1.227}{\sqrt{v}} nm\) \( λ = \frac{eh}{\sqrt{2mV}} nm\) \( λ = \frac{3.6}{\sqrt{v}} nm\) |
\( λ = \frac{1.227}{\sqrt{v}} nm\) |
We know, $\lambda=\frac{h}{p}$ and $p=\sqrt{2 m q V}$ ∴ \(\lambda=\frac{h}{\sqrt{2 m q V}} \) For an electron, $\frac{h}{\sqrt{2 m e }} = 12.27 A^o \text { or } 1.227 nm$ \( \Rightarrow \lambda = \frac{12.27}{\sqrt{V}} \) Å or $\frac{1.227}{\sqrt{V}} \mathrm{~nm}$ |