After 4 hours, $\frac{1}{16}$ of the initial amount of a certain radioactive isotype remains undecayed. What is the half life of the isotope? |
15 min 30 min 45 min 60 min |
60 min |
The correct answer is Option (4) → 60 min Radioactive Decay, $N(t)=N_0\left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$ where, $N(t)$ → Amount remaining after time t $N_0$ → Initial amount $t$ → time elapsed = 4 hour $T_{1/2}$ → half life $\frac{N(t)}{N_0}=\frac{1}{16}$ $\frac{1}{16}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}⇒\left(\frac{1}{2}\right)^4=\left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$ $⇒\frac{t}{T_{1/2}}=4⇒T_{1/2}=60\,min=1\,hour$ |