For $f(x)=\int\frac{e^x}{\sqrt{4-e^{2x}}}dx$, if the point $\left(0,\frac{π}{2}\right)$ satisfies $y=f(x)$, then the constant of integration of the given integral is: |
$\frac{π}{2}$ $\frac{π}{3}$ $\frac{π}{6}$ 0 |
$\frac{π}{3}$ |
The correct answer is Option (2) → $\frac{π}{3}$ $f(x)=\int\frac{e^x}{\sqrt{4-e^{2x}}}dx$ let, $e^x=2\sin θ$ $e^xdx=2\cos θdθ$ $⇒dx=\frac{2\cos θ}{e^x}dθ=\frac{2\cos θ}{2\sin θ}dθ=\cot θdθ$ $∴\sqrt{4-e^{2x}}=2\cos θ$ $I=\int\frac{2\sin θ}{2\cos θ}.\cot θdθ$ $=\int dθ=θ+C$ $=\sin^{-1}\left(\frac{e^x}{2}\right)+C$ Now, $f(0)=\frac{\pi}{2}$ $⇒\sin^{-1}\left(\frac{e^0}{2}\right)+C=\frac{\pi}{2}$ $⇒C=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$ |