CUET Preparation Today
CUET
-- Mathematics - Section B1
Determinants
If a, b, c are complex numbers, then the determinant Δ=\begin{vmatrix}0&-b&-c\\\bar b&0&-a\\\bar c&\bar a&0\end{vmatrix}, is |
is a non-zero real number purely imaginary 0 none of these |
purely imaginary |
We observe that \overline{Δ}=\begin{vmatrix}0&-\overline b&-\overline c\\b&0&-\overline a\\c&a&0\end{vmatrix} ⇒\overline{Δ}=-\begin{vmatrix}0&\overline b&\overline c\\-b&0&\overline a\\-c&-a&0\end{vmatrix} [Taking (-1) common from each row] ⇒\overline{Δ}=-\begin{vmatrix}0&-b&-c\\\overline b&0&-a\\\overline c&\overline a&0\end{vmatrix} [Interchanging rows and columns] ⇒\overline{Δ}=-Δ⇒Δ+\overline{Δ}=0 ⇒ Δ is purely imaginary. |