If a, b, c are complex numbers, then the determinant $Δ=\begin{vmatrix}0&-b&-c\\\bar b&0&-a\\\bar c&\bar a&0\end{vmatrix}$, is |
is a non-zero real number purely imaginary 0 none of these |
purely imaginary |
We observe that $\overline{Δ}=\begin{vmatrix}0&-\overline b&-\overline c\\b&0&-\overline a\\c&a&0\end{vmatrix}$ $⇒\overline{Δ}=-\begin{vmatrix}0&\overline b&\overline c\\-b&0&\overline a\\-c&-a&0\end{vmatrix}$ [Taking (-1) common from each row] $⇒\overline{Δ}=-\begin{vmatrix}0&-b&-c\\\overline b&0&-a\\\overline c&\overline a&0\end{vmatrix}$ [Interchanging rows and columns] $⇒\overline{Δ}=-Δ⇒Δ+\overline{Δ}=0$ ⇒ Δ is purely imaginary. |