The valueof the definite integral \(\int_{0}^{\frac{π}{2}}\)\(\sqrt {tan x}\) dx is |
π -1 \(\frac{π}{\sqrt{2}}\) \(\frac{3}{\sqrt{2}}\) |
\(\frac{π}{\sqrt{2}}\) |
The correct answer is option 3. \(\frac{π}{\sqrt{2}}\). \(I=\int\limits_{0}^{\frac{π}{2}}\sqrt {tan x}dx\) ....(i) Using property, \(I=\int\limits_{0}^{\frac{π}{2}}\sqrt {cot x}dx\) ....(ii) Adding eq. (i) & (ii) \(2I=\int\limits_{0}^{\frac{π}{2}}(\sqrt {tan x}+\sqrt {cot x})dx\) \(⇒ I = \frac{1}{\sqrt{2}}\int\limits_{0}^{\frac{\pi }{2}}\frac{sin x + cos x}{\sqrt{sin 2x}}dx\) \(⇒ I = \frac{1}{\sqrt{2}}\int\limits_{0}^{\frac{\pi }{2}}\frac{sin x + cos x}{\sqrt{1 - (sin x - cos x)^2}}dx\) Let, \(sinx - cosx = t\) \(⇒ (cos x + sin x)dx = dt\) \(∴ I = \frac{1}{\sqrt{2}}\int\limits_{-1}^{1}\frac{dt}{\sqrt{1 - t^2}}\) \(⇒ I = \frac{1}{\sqrt{2}}[sin^{-1} t]^1_{-1} = \frac{\pi }{2}\) |