$\lim\limits_{n \rightarrow \infty} \frac{(n !)^{1 / n}}{n}$ equals |
e e-1 1 none of these |
e-1 |
Let $A=\lim\limits_{n \rightarrow \infty} \frac{(n !)^{1 / n}}{n}$. Then, $\log A =\lim\limits_{n \rightarrow \infty} \log \left(\frac{1 . 2 . 3 ... n}{n^n}\right)^{1 / n}$ $\Rightarrow \log A =\lim\limits_{n \rightarrow \infty} \log \left(\frac{1}{n} . \frac{2}{n} . \frac{3}{n} ... \frac{n}{n}\right)^{1 / n}$ $\Rightarrow \log A=\lim\limits_{n \rightarrow \infty} \frac{1}{n} \sum\limits_{r=1}^n \log \left(\frac{r}{n}\right)$ $\Rightarrow \log A=\int\limits_0^1 \log x d x=[x \log x-x]_0^1=-1$ ∴ $A=e^{-1}$ |