$\lim\limits_{x \rightarrow \infty}\left(1+\frac{1}{x^2}\right)^x=$ |
1 2 -1 0 |
1 |
$y=\lim\limits_{x \rightarrow \infty}\left(1+\frac{1}{x^2}\right)^x$ $\log y=\lim\limits_{x \rightarrow \infty} x \log \left(1+\frac{1}{x^2}\right)$ $=\lim\limits_{x \rightarrow \infty} x\left(\frac{1}{x^2}-\frac{1}{2 x^4}+.....\right)$ $=\lim\limits_{x \rightarrow \infty} x . \frac{1}{x^2}\left(1-\frac{1}{2 x^4}+.....\right)$ log y = 0 y = e0 = 1 Hence (1) is the correct answer. |