The minimum value of the function $f(x)=\frac{a^2}{x}+\frac{b^2}{a-x}$, a > 0, b > 0, in (0, a), is |
$a+b$ $\frac{1}{a+b}$ $\frac{(a+b)^2}{a}$ $\frac{a+b}{a^2}$ |
$\frac{(a+b)^2}{a}$ |
We have, $f(x)=\frac{a^2}{x}+\frac{b^2}{a-x}$ $\Rightarrow f'(x)=-\frac{a^2}{x^2}+\frac{b^2}{(a-x)^2}$ ∴ $f'(x)=0$ $\Rightarrow \frac{a^2}{x^2}=\frac{b^2}{(a-x)^2}$ $\Rightarrow a^2(a-x)^2=b^2 x^2$ $\Rightarrow \ a(a-x)= \pm b x$ $\Rightarrow \ x=\frac{a^2}{a \pm b} \Rightarrow x=\frac{a^2}{a+b}$ $\left[∵ \frac{a^2}{a-b} \notin(0, a)\right]$ Now, $f''(x)=\frac{2 a^2}{x^3}+\frac{2 b^2}{(a-x)^2}>0$ for all $x \in(0, a)$ Hence, f(x) is minimum at $x=\frac{a^2}{a+b}$ with the minimum value given by $f\left(\frac{a^2}{a+b}\right)=(a+b)+\frac{b^2}{a-\frac{a^2}{a+b}}=(a+b)+\frac{b^2(a+b)}{a b}=\frac{(a+b)^2}{a}$ |