The solution of the differential equation $\left(1+y^2\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$, is |
$x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y+K}$ $(x-2)=K e^{\tan ^{-1} y}$ $2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+K$ $x e^{\tan ^{-1} y}=\tan ^{-1} y+K$ |
$2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+K$ |
We have, $\left(1+y^2\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ $\Rightarrow \frac{d x}{d y}+\frac{x}{1+y^2}=\frac{e^{\tan ^{-1} y}}{1+y^2}$ This is a linear differential equation with Integrating factor = $e^{\int \frac{1}{1+y^2} d y}=e^{\tan ^{-1} y}$ Multiplying (i) by integrating factor and integrating, we get $x e^{\tan ^{-1} y}=\int \frac{e^{2 \tan ^{-1} y}}{1+y^2} d y$ $\Rightarrow x e^{\tan ^{-1} y}=\frac{1}{2} \int e^{2 \tan ^{-1} y} d\left(2 \tan ^{-1} y\right)$ $\Rightarrow x e^{\tan ^{-1} y}=\frac{1}{2} e^{2 \tan ^{-1} y}+C$ $\Rightarrow 2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+K$, where $K=2 C$ |