Area of a rectangle having vertices A, B, C, D with position vectors $-\hat{i}+\frac{1}{2}\hat{j}+4\hat{k}, \hat{i}+\frac{1}{2}\hat{j}+4\hat{k}, \hat{i}-\frac{1}{2}\hat{j}+4\hat{k}$ and $-\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}$ respectively is : |
$\frac{1}{2}$ 1 2 4 |
2 |
Vertices: $A=(-1,\frac{1}{2},4),\ B=(1,\frac{1}{2},4),\ C=(1,-\frac{1}{2},4),\ D=(-1,-\frac{1}{2},4)$ Rectangle lies in the plane $z=4$. Length $AB=|(1-(-1),\frac{1}{2}-\frac{1}{2},4-4)|=|(2,0,0)|=2$ Width $BC=|(1-1,-\frac{1}{2}-\frac{1}{2},4-4)|=|(0,-1,0)|=1$ Area $=AB \times BC=2\times1=2$ Required area = $2$ |