If $y = 3e^{2x}+2e^{3x},$ then which one of the following is true ? |
$\frac{d^2y}{dx^2}+5\frac{dy}{dx}+6y = 0 $ $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y = 0 $ $\frac{d^2y}{dx^2}-5\frac{dy}{dx}-6y = 0 $ $\frac{d^2y}{dx^2}+5\frac{dy}{dx}-6y = 0 $ |
$\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y = 0 $ |
The correct answer is Option (2) → $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y = 0 $ $y = 3e^{2x}+2e^{3x}$ $⇒\frac{dy}{dx}=6e^{2x}+6e^{2x}$ $⇒\frac{d^2y}{dx^2}=12e^{2x}+12e^{2x}$ Now, $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=12e^{2x}+12e^{2x}-30e^{2x}-30e^{2x}+18e^{2x}+18e^{2x}$ $=0$ |