Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-I, B-II, C-III, D-IV A-II, B-IV, C-I, D-III A-II, B-I, C-IV, D-III A-I, B-III, C-II, D-IV |
A-II, B-I, C-IV, D-III |
The correct answer is Option (3) → A-II, B-I, C-IV, D-III (A) $(A+A^T)^T=A^T+(A^T)^T$ $=A^T+A$ $=A+A^T$ $⇒(A+A^T)$ is symmetric matrix. (B) $\begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}$ → Identity Matrix (C) $(A-A^T)^T=A^T-(A^T)^T$ $=A^T-A$ $=-(A-A^T)$ $⇒(A-A^T)$ is skew-symmetric matrix. (D) $\begin{bmatrix} 2 & 0 \\0 & 2\end{bmatrix}$ → Scalar Matrix |