If $C(x)= ax^2 -bx - c$ represents the total cost function then the slope of the tangent to the marginal cost curve at the point (x, y ) is : |
a 2a 2ax $\frac{x}{a}$ |
2a |
The correct answer is Option (2) → 2a The total cost function is, $c(x)=ax^2+bx-c$ and, Marginal cost is, $mc(x)=\frac{dc(x)}{dx}$ $=2ax-b$ and, Slope of the tangent = $\frac{d(mc(x))}{dx}=2a$ |