The solution of $\cos (x+y) d y=d x$, is |
$y=\tan \left(\frac{x+y}{2}\right)+C$ $y=\cos ^{-1}\left(\frac{y}{x}\right)$ $y=x \sec \left(\frac{y}{x}\right)+C$ none of these |
$y=\tan \left(\frac{x+y}{2}\right)+C$ |
We have, $\cos (x+y) d y=d x$ Putting $x+y=v$ and $1+\frac{d y}{d x}=\frac{d v}{d x}$, we get $\cos v\left(\frac{d v}{d x}-1\right)=1$ $\Rightarrow \frac{d v}{d x}=\frac{1+\cos v}{\cos v}$ $\Rightarrow \frac{\cos v}{1+\cos v} d v=d x$ $\Rightarrow \left(1-\frac{1}{1+\cos v}\right) d v=d x$ $\Rightarrow \int\left(1-\frac{1}{2} \sec ^2 \frac{v}{2}\right) d v=\int d x$ $\Rightarrow v-\tan \frac{v}{2}=x+C$ $\Rightarrow x+y-\tan \left(\frac{x+y}{2}\right)=x+C \Rightarrow y=\tan \frac{x+y}{2}+C$ |