If $\begin{bmatrix}a-b&0&0\\0&b-c&0\\0&0&c-2\end{bmatrix}$ is a scalar matrix such that $a + b + c = 0$, then, which of the following are TRUE? (A) $a = 0$ Choose the correct answer from the options given below: |
(A) and (C) only (B) and (D) only (C) and (D) only (A), (C) and (D) only |
(B) and (D) only |
The correct answer is Option (2) → (B) and (D) only Given matrix: $\begin{bmatrix} a-b & 0 & 0 \\ 0 & b-c & 0 \\ 0 & 0 & c-2 \end{bmatrix}$ is a scalar matrix. For a scalar matrix, all diagonal elements are equal: $a-b = b-c = c-2 = k$ (some constant) Also, $a+b+c=0$ From $a-b = b-c \Rightarrow a-b = b-c \Rightarrow a - 2b + c = 0$ Also, $a+b+c = 0$ Subtract the two equations: $(a+b+c) - (a-2b+c) = 0 - 0 \Rightarrow 3b = 0 \Rightarrow b = 0$ ✅ Then, $a+b+c = a+0+c=0 \Rightarrow a + c = 0 \Rightarrow a=-c$ Also, $b-c = 0-c=-c = k$ and $c-2 = k \Rightarrow -c = c-2 \Rightarrow 2c=2 \Rightarrow c=1$ ✅ Then, $a=-c=-1$ Check $a-b = -1-0=-1$, $b-c=0-1=-1$, $c-2=1-2=-1$ ✅ All equal, matrix is scalar. True statements: (B) b=0, (D) c=1 |