The value of $(\frac{1-cotθ}{1-tanθ})^2 +1$, if 0° < θ < 90°, is equal to: |
$cosec^2θ$ $sin^2θ$ $cos^2θ$ $sec^θ$ |
$cosec^2θ$ |
( \(\frac{1 - cotθ }{1 + tanθ}\) )² + 1 = ( \(\frac{1 - cosθ/sinθ }{1 + sinθ/cosθ}\) )² + 1 = ( \(\frac{(sinθ - cosθ)² }{sin²θ}\) × ( \(\frac{cos²θ }{ ( cosθ + sinθ )²}\) + 1 = ( \(\frac{cos² θ}{sin²θ}\) + 1 = cot²θ + 1 { Using , cosec²θ - cot²θ = 1 } = cosec²θ |