The shaded region shown in the figure is given by inequalities: |
14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5 14x + 5y ≥ 70, y ≤ 14, x - y ≥ 5 14x + 5y ≤ 70, y ≤ 14, x - y ≥ 5 14x + 5y ≥ 70, y ≥ 14, x - y ≥ 5 |
14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5 |
The correct answer is Option (1) → 14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5 Obtaining equation of lines first for AC: $\frac{y-14}{x-0}=\frac{0-14}{5-0}$ $5y-70=-14x$ or $14x+5y=70$ here $14x+5y≥70$ for CB: $\frac{y-14}{x-0}=\frac{14-14}{19-0}$ $y=14$ or $y≤14$ (for region) for AB: $\frac{y-0}{x-5}=\frac{14-0}{19-5}$ so $y=x-5$ or $x-y≤5$ (for region) |