Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Linear Programming

Question:

The shaded region shown in the figure is given by inequalities:

Options:

14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5

14x + 5y ≥ 70, y ≤ 14, x - y ≥ 5

14x + 5y ≤ 70, y ≤ 14, x - y ≥ 5

14x + 5y ≥ 70, y ≥ 14, x - y ≥ 5

Correct Answer:

14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5

Explanation:

The correct answer is Option (1) → 14x + 5y ≥ 70, y ≤ 14, x - y ≤ 5

Obtaining equation of lines first 

for AC: $\frac{y-14}{x-0}=\frac{0-14}{5-0}$

$5y-70=-14x$

or $14x+5y=70$

here $14x+5y≥70$

for CB: $\frac{y-14}{x-0}=\frac{14-14}{19-0}$

$y=14$ or $y≤14$ (for region)

for AB: $\frac{y-0}{x-5}=\frac{14-0}{19-5}$ 

so $y=x-5$

or $x-y≤5$ (for region)