If $(x+y)^3+27(x-y)^3=(A x-2 y)\left(B x^2+C x y+13 y^2\right)$, then the value of $A-B-C$ is: |
27 13 15 20 |
13 |
$(x+y)^3+27(x-y)^3=(A x-2 y)\left(B x^2+C x y+13 y^2\right)$ = (x + y)3 + (3x – 3y)3 = (x + y + 3x – 3y) [x2 + y2 + 2xy + 9x2 + 9y2 – 18xy – 3x2 + 3xy – 3xy + 3y2] = (4x – 2y) [x2 + 9x2 – 3x2 + y2 + 9y2 + 3y2 + 2xy – 18xy] = (4x – 2y) [7x2 + 13y2 – 16xy] Now, A = 4, B = 7 and C = -16 A – B – C = [4 – 7 – (-16)] = (-3 + 16) = 13 |