A physical quantity of the dimensions of length that can be formed out of c, G and \(\frac{e^2}{4 \pi \epsilon_o}\) [c is velocity of light, G is universal constant of gravitation and e is charge] |
\(\frac{1}{c}\) G \(\frac{e^2}{4 \pi \epsilon_o}\) \(\frac{1}{c^2}\) [G \(\frac{e^2}{4 \pi \epsilon_o}\)]1/2 c2 [G \(\frac{e^2}{4 \pi \epsilon_o}\)]2 \(\frac{1}{c^2}\) [\(\frac{e^2}{4 G \pi \epsilon_o}\)]2 |
\(\frac{1}{c^2}\) [G \(\frac{e^2}{4 \pi \epsilon_o}\)]1/2 |
G = M-1 L3 T-2 c = L1 T-1 \(\frac{e^2}{4πε_o}\) = M1 L3 T-2 l ∝ cP GQ [\(\frac{e^2}{4πε_o}\)]R l ∝ LP T-P (M-1 L3 T-2)Q (M1 L3 T-2)R M0 L1 T0 = M-Q+R LP+3Q+3R T-P-2Q-2R -Q + R = 0 Q = R P+3Q+3R = 1 -P-2Q-2R = 0 On solving, Q = R = \(\frac{1}{2}\), P = -2 l ∝ \(\frac{1}{c^2}\) [G \(\frac{e^2}{4 \pi \epsilon_o}\)]1/2
|