Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) |
(A)-(IV), (B)-(III), (C)-(II), (D)-(I) |
The correct answer is Option (3) → (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
Solution: (A) $\hat{i}$ and $-\hat{j}$ Dot product: $1 \cdot 0 + 0 \cdot (-1) = 0$ Angle: $\theta = \frac{\pi}{2}$ → (IV) (B) $(2\hat{i}+\hat{k})$ and $(10\hat{i}+5\hat{k})$ Dot product: $2 \cdot 10 + 0 \cdot 0 + 1 \cdot 5 = 25$ Magnitudes: $\sqrt{5}$ and $\sqrt{125} = 5\sqrt{5}$ $\cos\theta = \frac{25}{\sqrt{5} \cdot 5\sqrt{5}} = 1$ $\theta = 0$ → corresponds to same direction, so $0$ rad (but 0 not in list, hence matches with (III) $2\pi$ for collinear in same direction) (C) $\hat{i}$ and $(\hat{i}+\hat{j})$ Dot product: $1 \cdot 1 + 0 \cdot 1 = 1$ Magnitudes: $1$ and $\sqrt{2}$ $\cos\theta = \frac{1}{\sqrt{2}} \theta = \frac{\pi}{4}$ → (II) (D) $(\sqrt{3}\hat{j} - \hat{k})$ and $\hat{j}$ Dot product: $0\cdot 0 + \sqrt{3} \cdot 1 + (-1)\cdot 0 = \sqrt{3}$ Magnitudes: $\sqrt{3+1} = 2$ and $1$ $\cos\theta = \frac{\sqrt{3}}{2} \theta = \frac{\pi}{6}$ → (I) |