$\int\left(x^6+x^4\right) d\left(x^2\right)$ is equal to: |
$\frac{x^6}{6}+\frac{x^4}{4}+C$, where C is a constant $\frac{x^7}{7}+\frac{x^5}{5}+C$, where C is a constant $\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant $\frac{x^8}{6}+\frac{x^6}{6}+C$, where C is a constant |
$\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant |
The correct answer is Option (3) → $\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant $\int x^6+x^4d(x^2)$ so $\int 2(x^6+x^4)x\,dx=2\left(\frac{x^8}{8}+\frac{x^6}{6}\right)+c$ $=\frac{x^8}{4}+\frac{x^6}{3}+c$ |