Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

$\int\left(x^6+x^4\right) d\left(x^2\right)$ is equal to:

Options:

$\frac{x^6}{6}+\frac{x^4}{4}+C$, where C is a constant

$\frac{x^7}{7}+\frac{x^5}{5}+C$, where C is a constant

$\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant

$\frac{x^8}{6}+\frac{x^6}{6}+C$, where C is a constant

Correct Answer:

$\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant

Explanation:

The correct answer is Option (3) → $\frac{x^8}{4}+\frac{x^6}{3}+C$, where C is a constant

$\int x^6+x^4d(x^2)$

so $\int 2(x^6+x^4)x\,dx=2\left(\frac{x^8}{8}+\frac{x^6}{6}\right)+c$

$=\frac{x^8}{4}+\frac{x^6}{3}+c$