If tan2 θ + tan4 θ = 1, then: |
cot2 θ + cot4 θ = 1 cos2 θ + cos4 θ = 1 sin2 θ + sin4 θ = 1 cosec2 θ + sec4 θ = 1 |
cos2 θ + cos4 θ = 1 |
Given :- tan2 θ + tan4 θ = 1 ----(1) tan2 θ( 1 + tan2 θ ) = 1 tan2 θ . sec2 θ = 1 tan2 θ = cos2 θ Put value of tan2 θ in equation 1 So , cos2 θ + cos4 θ = 1 , option 2 is correct |