Let $f$ be a real-valued function defined on the interval $(-1,1)$ such that $e^{-x} f(x)=2+\int\limits_0^x \sqrt{t^4+1} d t$, for all $x \in(-1,1)$ and let $f^{-1}$ be the inverse function of $f$. Then, $\left(f^{-1}\right)'(2)$ is equal to |
1 $1 / 3$ $1 / 2$ $1 / e$ |
$1 / 3$ |
We have, $e^{-x} f(x)=2+\int\limits_0^x \sqrt{t^4+1} d t$ ......(i) Differentiating both sides w.r.to $x$, we get $\Rightarrow -e^{-x} f(x)+e^{-x} f'(x)=\sqrt{x^4+1}$ ......(ii) Now, $fof^{-1}(x)=x$ $\Rightarrow \frac{d}{d x}\left(fof^{-1}(x)\right)=1$ $\Rightarrow \frac{d}{d x}\left\{f\left(f^{-1}(x)\right)\right\}=1$ $\Rightarrow f'\left(f^{-1}(x)\right) \times \frac{d}{d x}\left\{f^{-1}(x)\right\}=1$ $\Rightarrow f'\left(f^{-1}(2)\right)\left(f^{-1}\right)'(2)=1$ [Putting x = 2] $\Rightarrow f'(0)\left(f^{-1}\right)(2)=1$ [∵ f(0) = 2 ⇒ f-1(2) = 0] $\Rightarrow \left(f^{-N_1}\right)'(2)=\frac{1}{f'(0)}$ [Putting x = 0 in (ii) -f(0) + f'(0) = 1 ⇒ f-1(0) = 3] $\Rightarrow\left(f^{-1}\right)'(2)=\frac{1}{3}$ |