If a random variable X follows Poisson distribution such that P(X=1)= 2P(X=2), then P(X=4) is : |
$\frac{1}{e}$ $\frac{1}{24e}$ $\frac{1}{4e}$ $\frac{1}{12e}$ |
$\frac{1}{24e}$ |
The correct answer is Option (2) → $\frac{1}{24e}$ A Poisson distribution random variable X has the PMF - $P(X=x)=\frac{e^{-λ}λ^x}{x!}$ $P(X=1)=2P(X=2)$ $\frac{e^{-λ}λ^1}{1!}=2×\frac{e^{-λ}λ^2}{2}$ $λ=1$ $P(X=4)=\frac{e^{-1}1^4}{4!}=\frac{1}{24e}$ |