The function $f(x) = 6-6x-2x^2$ |
Strictly decreasing for $x <-\frac{3}{2}$ Strictly increasing for $x <\frac{3}{2}$ Strictly decreasing for $x >-\frac{3}{2}$ Strictly increasing for $x >\frac{3}{2}$ |
Strictly decreasing for $x >-\frac{3}{2}$ |
The correct answer is Option (3) → Strictly decreasing for $x >-\frac{3}{2}$ Given the function $f(x) = 6 - 6x - 2x^2$. To find where $f(x)$ is strictly decreasing, compute the first derivative: $$f'(x) = -6 - 4x.$$ For $f(x)$ to be strictly decreasing, $f'(x) < 0$: $$-6 - 4x < 0.$$ Rearrange: $$-4x < 6$$ $$x > -\frac{3}{2}.$$ Therefore, $f(x)$ is strictly decreasing for $x > -\frac{3}{2}$. |