If $\vec a,\vec b,\vec c$ are three non-coplanar, non-zero vectors, then $(\vec a. \vec a) (\vec b×\vec c) + (\vec a.\vec b) (\vec c×\vec a) + (\vec a.\vec c) (\vec a×\vec b)$ is equal to |
$[\vec a\,\,\vec b\,\,\vec c]\vec c$ $[\vec b\,\,\vec c\,\,\vec a]\vec a$ $[\vec c\,\,\vec a\,\,\vec b]\vec b$ none of these |
$[\vec b\,\,\vec c\,\,\vec a]\vec a$ |
Since $\vec a,\vec b,\vec c$ are non-coplanar vectors. Therefore, so are the vectors $\vec a×\vec b, \vec b×\vec c, \vec c×\vec a$. We know that any vector in space is expressible as the linear combination of three non-coplanar vectors. So, let $\vec a = x(\vec b×\vec c) + y (\vec c×\vec a) +z (\vec a×\vec b)$ ...(i) Taking dot products successively with $\vec a,\vec b,\vec c$ we get $x=\frac{\vec a.\vec a}{[\vec a\,\,\vec b\,\,\vec c]},y=\frac{\vec a.\vec b}{[\vec a\,\,\vec b\,\,\vec c]},z=\frac{\vec a.\vec c}{[\vec a\,\,\vec b\,\,\vec c]}$ Substituting these values in (i), we obtain that the given expression is equal to $[\vec a\,\,\vec b\,\,\vec c]\vec a$. |